Fast Oscillation Waves in Dense Neutrino Gases

Huaiyu Duan

Topics in Cosmic Neutrino Physics October 9 — 11, 2019, Fermilab

Supernova

Neutron Star Merger

David Malin / AAO

NSF/LIGO/Sonoma State University/A. Simonnet

Neutrino in SNe

- ~10⁵³ ergs, 10⁵⁸ neutrinos in ~10 seconds
- All neutrino species, 10~30 MeV
- Dominate energetics
- Influence nucleosynthesis
- Probe into SNe

WFO T≈0.9MeV

heating region

cooling region

Oscillations in Dense Media

$$(\partial_t + \hat{\mathbf{v}} \cdot \nabla)\rho = -\mathrm{i}[\mathsf{H}, \, \rho] + \mathcal{L}$$

mass matrix — electron density
$$\mathsf{H} = \frac{\mathsf{M}^2}{2E} + \sqrt{2}G_\mathrm{F}\,\mathrm{diag}[n_e,0,0] + \mathsf{H}_{\nu\nu}$$
 neutrino energy — v-v forward scattering (self-coupling)

$$\mathsf{H}_{\nu\nu} = \sqrt{2}G_{\mathrm{F}} \int \mathrm{d}^{3}\mathbf{p}' (1 - \hat{\mathbf{v}} \cdot \hat{\mathbf{v}}') \rho_{\mathbf{p}'} - \bar{\rho}_{\mathbf{p}'}$$

Oscillations in Dense Media

7D Problem

Coherent forward scattering outside neutrino sphere

$$\rho(t; r, \Theta, \Phi; E, \vartheta, \varphi)$$

Bulb Model

Azimuthal symmetry around any radial direction

$$\rho(r; E, \vartheta)$$

Bulb Model

Bulb Model

Fast Oscillations

- "Slow" oscillations occur on the distance scale of 1 km (~10 MeV / δm_{atm}^2).
- "Fast" oscillations can occur on the distance scale of 1 cm (\sim G_F n_v), independent of the neutrino energies (Sawyer, 2016).
 - Requires crossed electron lepton number (ELN) distribution (Dasgupta et al, 2016).

ELN Crossing

$$G = (f_{\nu_e} - f_{\bar{\nu}_e}) - (f_{\nu_x} - f_{\bar{\nu}_x})$$

ELN Crossing

11.2 M_☉, t_{pb}=200ms, 3D v transport (post-proc.)

Fast oscillation growth rate dominates the collision rate (Capozzi et al, 2018)

Growing Perturbation

$$\rho(t, z, v_z) = \begin{bmatrix} n_{\nu_e} & \rho_{ex} \\ \rho_{ex}^* & n_{\nu_x} \end{bmatrix} \propto \begin{bmatrix} P_3 & P_1 - iP_2 \\ P_1 + iP_2 & -P_3 \end{bmatrix} + t.t.$$

Summary

- Flavor oscillation waves can propagate through the dense neutrino gases in core-collapse supernovae (SNe) and binary neutron mergers.
- "Fast" oscillations can occur on very short distance scales where ELN crossing occurs. (Need SN simulation inputs).
- Redistribution and transportation of ELN can have ramifications in SN physics (dynamics, nucleosynthesis, signals, ...).